

2 | P a g e

1. Technical Overview:
The Python Programming Competition aims to refine participants’

skills in logical thinking and problem-solving through a set of

gradually challenging Missions that take into account different age

groups.

The competition focuses on training students to transform ideas

into practical solutions using programming, with emphasis on:

• Logical problem analysis.

• Designing simple and advanced algorithms.

• Implementing code in a clear and organized way that makes it

easy to read and develop further.

The competition is distinguished by the fact that it does not only

test knowledge but also enhances creativity, accuracy, and

discipline in coding, making it a comprehensive educational and

competitive experience suitable for both beginners and advanced

learners.

2. Team Composition :

• Number of team members: 2 to 4 Students, guided by a Coach

• Age Group:

1. Junior Category:

❖ Ages: 10 to 12 years.

2. Senior Category:

❖ Ages: 13 to 17 years.

3. Adult Category:

❖ Ages: 18 years and above.

3 | P a g e

3. General Rules:
• Each participant must bring their own laptop.

• The code/task must be delivered before the specified time
(countdown).

• It is strictly forbidden to use the internet during the time of the
competition.

• After each round, the team presents their work to the judging
panel.

• The judging panel reviews the submitted code manually and
evaluates it according to specific criteria.

• Before the start of each round, 15 minutes will be set aside to
explain the challenge and answer the teams' questions.

• Any contact with people outside the team during the
competition time is strictly prohibited.

• Any intervention or assistance from coaches/supervisors
during the time of the rounds will result in a first warning, and
its repetition may result in the team being disqualified from the
competition.

4. Rules for Website Developers:
• Age group allowed to participate: 10 to 18+ years old.

• Any code editor (IDE) such as: VS Code is allowed.

• The competition consists of 3 rounds, and each round is a
different challenge explained by the moderator during the 15
minutes allotted before the start.

• Duration of each round: one hour only.

• The challenges are broken down by age group.

• Each mission must be completed on time.
❖ The code should be:
❖ Clean Code.
❖ Comments illustrate the basic idea.
❖ Properly StructuredUsing .(Functions/Classes)
❖ Readable with clear variable and function names.

• Any output must be coordinated and professional.

• The use of the internet during the tour is not allowed to prevent
cheating.

4 | P a g e

5. Technical Requirements:

• Junior Level:

❖ Familiarity with the basics: variables, calculations, conditions,

loops.

❖ Ability to use menus and text.

❖ Write simple functions that take inputs and return outputs.

❖ Knowledge of dictionaries and collections.

❖ Understand simple search and sorting algorithms.

❖ limited set of A built-in functions such as :

• range(), upper(), lower(), int(), str().

• Senior Level:

❖ Familiarity with all of the above at the junior level.

❖ Handle files (open, read, write).

❖ Apply the principles of OOP (classes, objects, simple

inheritance).

❖ Write advanced functions (Recursive, Lambda).

❖ Familiarity with additional data structures: Stacks, Queues,

Tuples.

❖ Knowledge of search algorithms (DFS, BFS) and advanced

sorting (Merge, Sort, Quick Sort).

❖ the use of additional functions such asAllows :

• max(), min(), sum(), sorted(),map(), filter().

• Adult Level:

❖ Familiarity with all adult level requirements.

❖ Expansion into OOP (including multiple inheritance).

❖ Exception Handling.

❖ Create and use Modules and Packages.

❖ Knowledge of advanced data structures: Linked List, Graph

using Heap.

❖ the use of additional functions such asAllows :

• any(), all(), round(), reversed(), type(), isinstance(), hasattr().

5 | P a g e

6. Guiding Examples :

• Junior Level:

• Task 1 String Reverser:
Write a program that asks the user to enter a word, then
reverse it and print the result.
Expected Output:

 Enter a word: hello
Olleh

• Task 2 Even Numbers Finder:
Write a program that asks the user to enter a number, then
prints all even numbers from 1 to that number.
Expected Output:
Enter a number: 10
2 4 6 8 10

• Senior Level:

• Task 1 Word Counter:
Write a program that reads the content of a text file and then

displays the number of words in it.
Expected Output :
File Content: "Python is great and Python is powerful”
Word Count = 7

• Task 2 Queue Simulation:
Write a program that simulates a queue. Queue) Add multiple
items (enqueue), then remove two items (dequeue), and view
the menu after each operation.
Expected Output :
Enqueue: A, B, C, D
Queue = [A, B, C, D]
Dequeue → A
 Queue = [B, C, D]
 Dequeue → B
Queue = [C, D]

6 | P a g e

• Adult Level:

• Task: Coin Change Problem (Dynamic Programming):

Write a program that calculates the minimum number of

a specific amount using certaincurrencies needed to create

denominations of currencies.

Expected Output:

Coins [1 ,2 ,5]
Amount: 11
Minimum coins needed = 3

Good Luck .

